Canadian Perspective for the Removal of Micropollutants in Wastewater Treatment

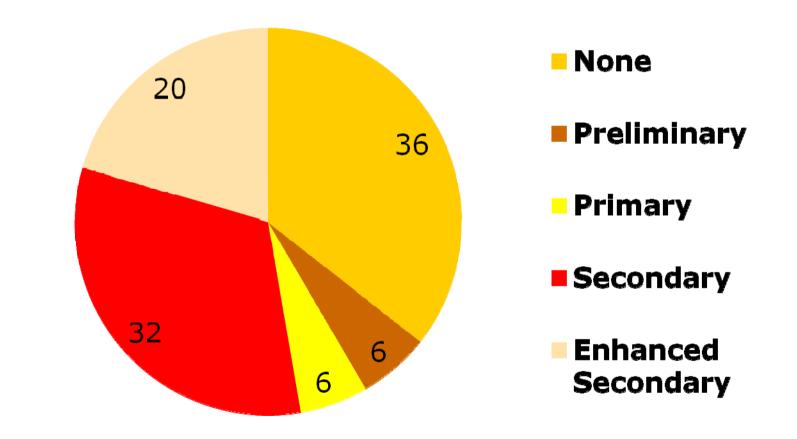
Wayne Parker Civil and Environmental Engineering University of Waterloo Waterloo, Ontario

Canada vs the EU

Population: EU: 491 M Canada: 32 M

Some statistics

• Water availability per person per year


- Canada: 94,353 m³ per capita-year
- Germany: 1,878 m³ per capita-year

D Population Density

- Canada: 3.2/km²
- Germany: 230/km²

Wastewater Treatment in Canada

Waterloo

Source: CWWA (2001)

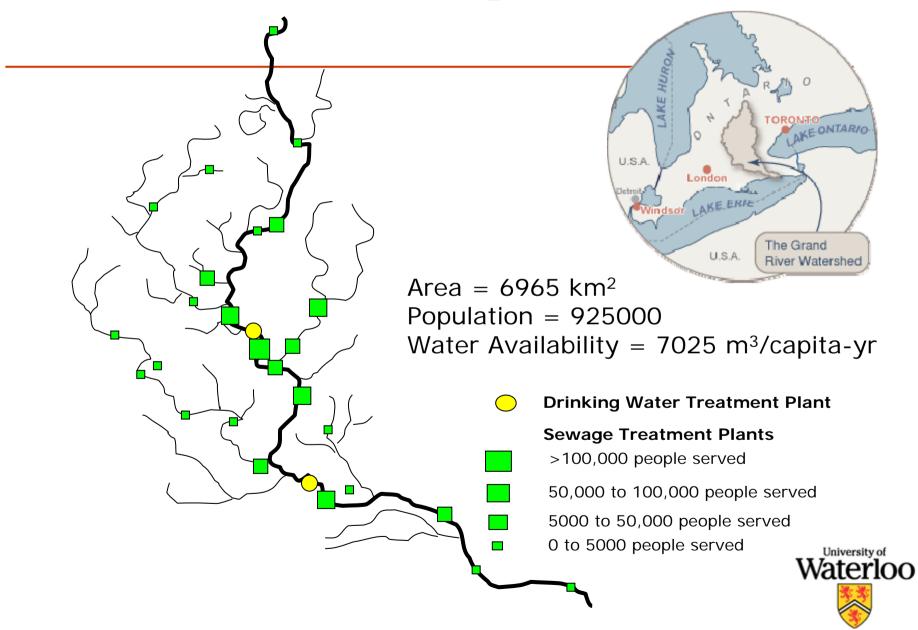
Biosolids

Land application of municipal biosolids to agricultural fields is widely practiced

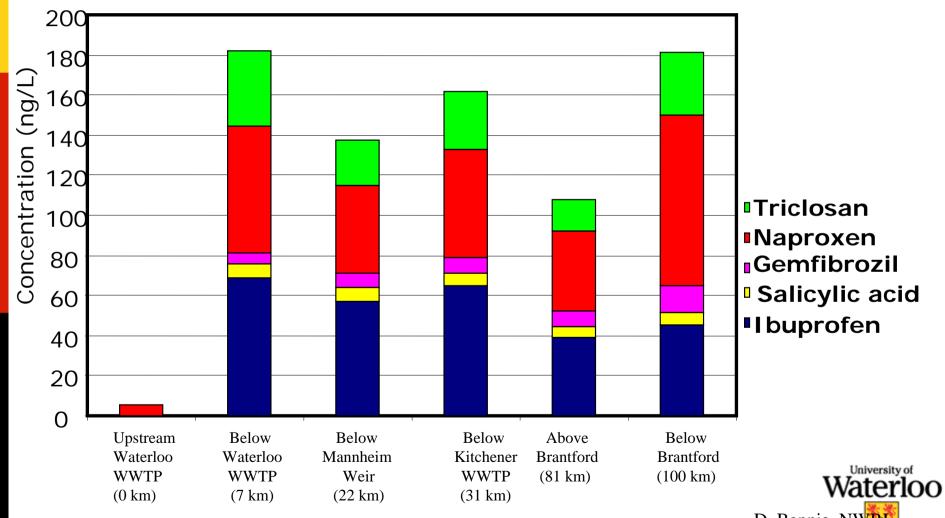
- A controlled practice
- Winter application not permitted
- Description of Approximately 40% of biosolids in Ontario go to land

D Run-off and tile drain discharges

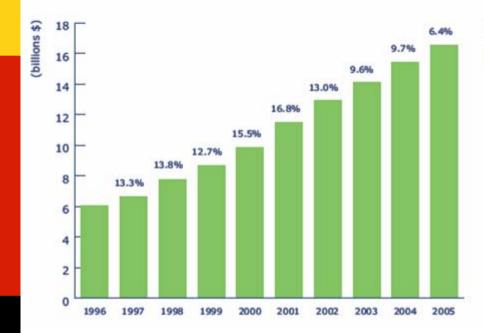
Not all regions are equivalent: Saskatchewan River



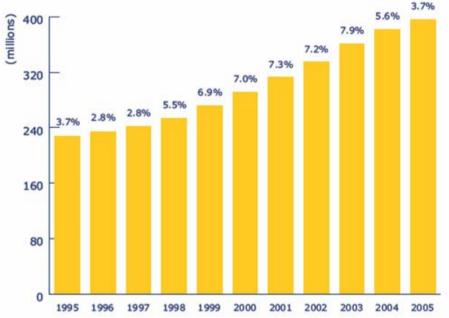
Water Availability (Avg)


7300 m³/capita year

The Grand River: An Impacted Watershed


Pharmaceuticals and Personal Care Products in the Grand River (2003-2004)

D. Bennie, NWRI


Pharmaceutical trends

Drug store and hospital purchases, Canada, 1996-2005

Pharmaceutical trends

Retail prescriptions' dispensed in Canada, 1995-2005

Source IMS HEALTH Canada http://www.imshealthcanada.com/web/channel/0,3147,77303623_63872702_77770072,00.html

Centre for Control of Emerging Contaminants

CCEC

CCEC Mission & Objectives

Mission: Promote and coordinate fundamental and applied research into water and wastewater treatment as related to control of emerging contaminants.

Objectives:

- Provide a central point of contact for Researchers, Regulators and Technology Implementers interested in control of emerging contaminants
- Provide administrative and technical support for multi-disciplinary & multi-institutional research projects
- Contribute to science-based policies related to control of ECs
- □ Improve and maintain research infrastructure

CCEC Members

Wayne Parker **Civil & Environmental** Engr. Wastewater Treatment

NSERC Chair in Water Treatment

Robin Slawson Biology

> Wilfrid Laurier University

Hongde Zhou School of Engine Wastewater

CRC Water

University of

Mark Servos

Biology

Protection

CRC Water Qua Science

Barry Warner

Wetlands

Earth & Environm

Ed McBean School of Engr.

Susan Andrews, Bob Andrews and Ron Hofmann **Civil Engineering** Drinking Water Research Group University of Toronto

David Blowes and Carol Ptacek Chemical Earth & Environmental Science Engr. Groundwater Remediation Wetlands

Ray Legge Dave

Rudolph Civil &

University of

aterloo

Envir. Ground Water

Metcalfe

Worsfold

Trent

University

Partners

<u>Institutional</u>

Universities of Waterloo, Toronto, Guelph, Trent & Wilfrid Laurier Alberta Nano Institute Flemming College <u>Municipalities</u>

<u>Government</u>

Ontario Ministry of Research and Innovation Ontario Ministry of the Environment Environment Canada Public Health Agency of Canada

Recent and Ongoing Studies: CCEC Members and Partners

Full-Scale Assessment of the Removal of PPCP from Wastewater

David M. Andrews Sigrid Peldzus Peter Huck

University of Waterloo

Project Objectives

To identify the impact of HRT on the removal of a select group of PPCPs

٠

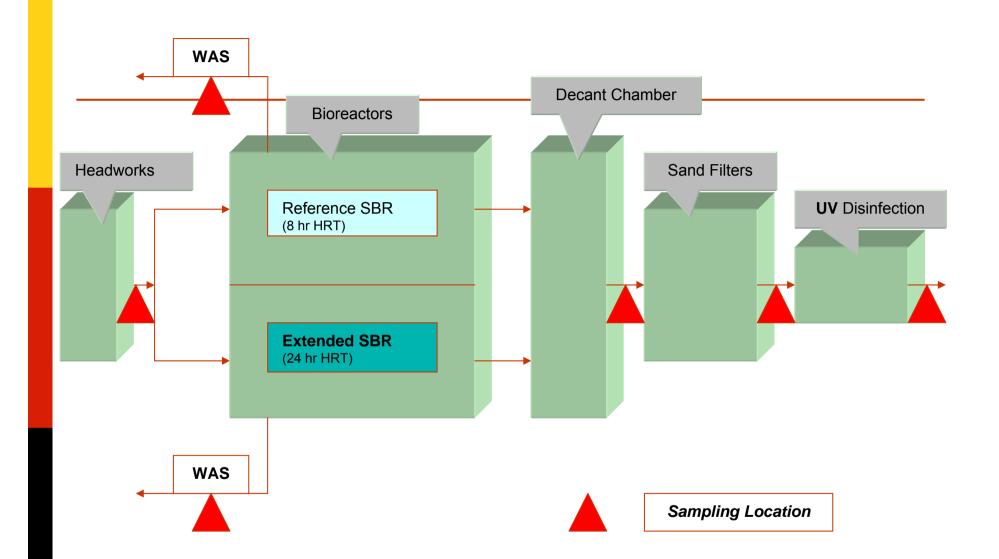
٠

- To assess the inherent abilities of Sequencing batch Reactors (SBRs) to alter HRT along with the subsequent impact on the removal of recalcitrant organic compounds
 - To evaluate the impact of seasonal effects on PPCP removal
 - To assess the impact of individual treatment processes on PPCP removal

Wastewater Treatment Plant

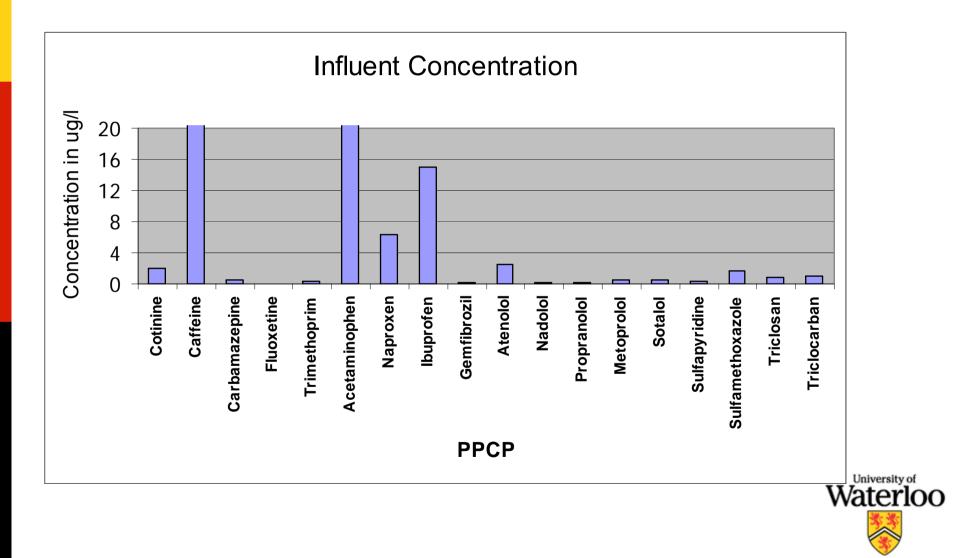
New Hamburg WWTP

- Sequencing Batch Reactor with Filtration and UV Disinfection
- Design Capacity 5,200 m³ per day
- Utilization 60%
- Population Served 8,495

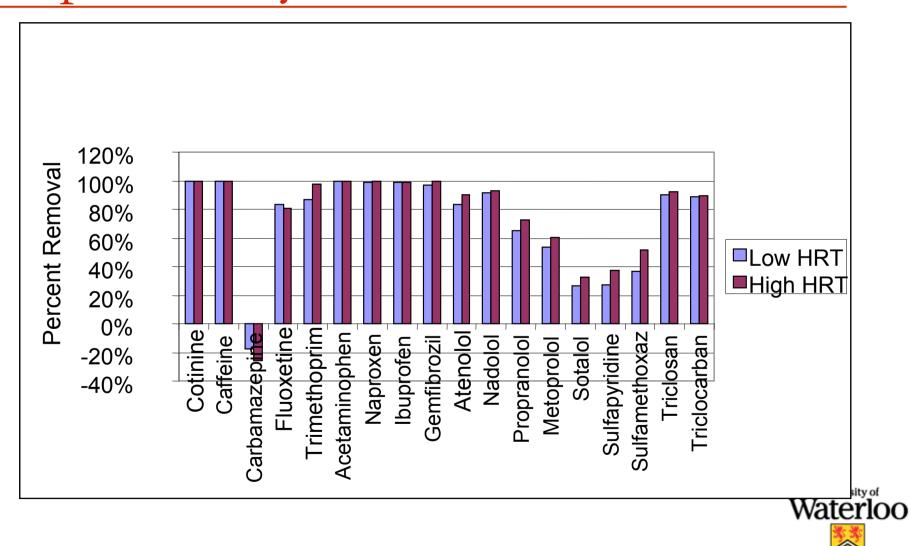


Operating Conditions for Study

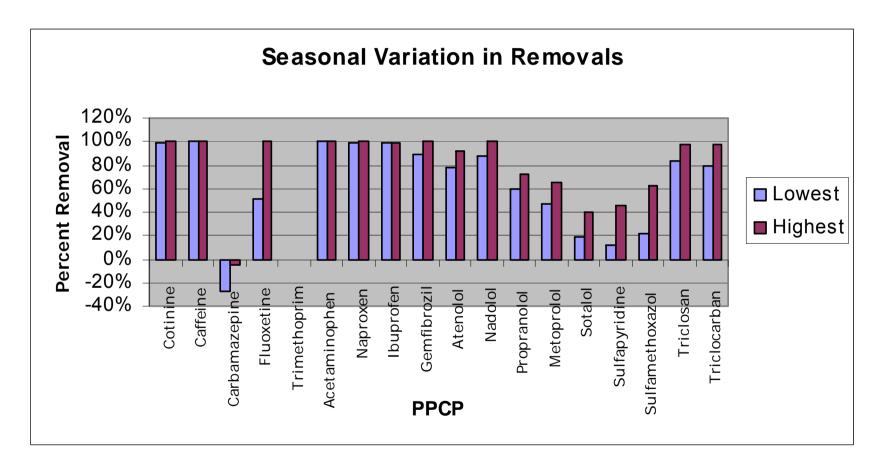
- Reference 8 Hour HRT
- Extended 24 Hour HRT



Target PPCPs

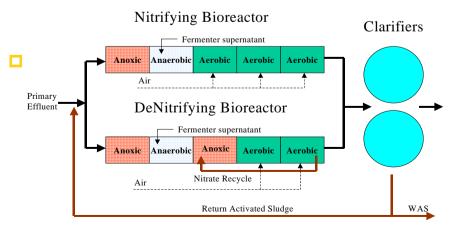

- Criteria for target
 PPCPs:
 - frequency of detection
 - variations in reported removals
 - range of chemical and physical properties.

Neutral drugs	Cotinine Caffeine Carbamazepine Fluoxetine Trimethoprim	Nicotine Metabolite Stimulant Antiepileptic Antidepressant Antibiotic
Acidic drugs	Acetaminophen Naproxen Ibuprofen Gemfibrozil	Analgesic Anti-inflammatory Anti-inflammatory Lipid Regulator
Beta-Blockers	Atenolol Nadolol Propranolol Metoprolol Sotalol	Antiadrenergenic Antiadrenergenic Antiadrenergenic Antiadrenergenic Antiadrenergenic
Sulfonamides	Sulfapyridine Sulfamethoxazole	Antibiotic Antibiotic
Antimicrobials	Triclosan Triclocarban	Antiseptic Antisepti©niversity of


PPCP Concentration

Impact of Hydraulic Retention Time

Seasonal Impact


Additional Investigations

Solids Retention Time

- Tertiary CAS WWTP
- Parallel evaluation of 5 and 10 day SRT
- 3 seasonal events completed

Redox Conditions

- BNR WWTP
- Parallel evaluation of nitrification and denitrification

Modeling the Fate of Estrogenic Hormones in Wastewater Treatment

> Hugh Monteith, Hydromantis, Inc.

Wayne Parker University of Waterloo

Target Hormones

Abbreviations

E1 = Estrone (CAS# 53-16-7)

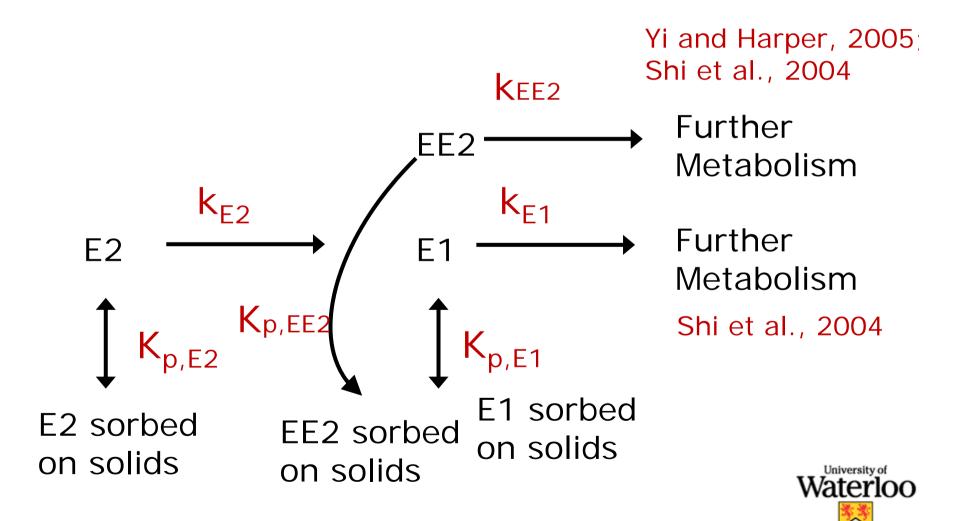
• $E2 = 17\beta$ – estradiol (CAS# 50-28-2)

Natural

• EE2 = 17α – ethinylestradiol (CAS# 57-63-6)

Fate in Wastewater Treatment

Sorption to solids

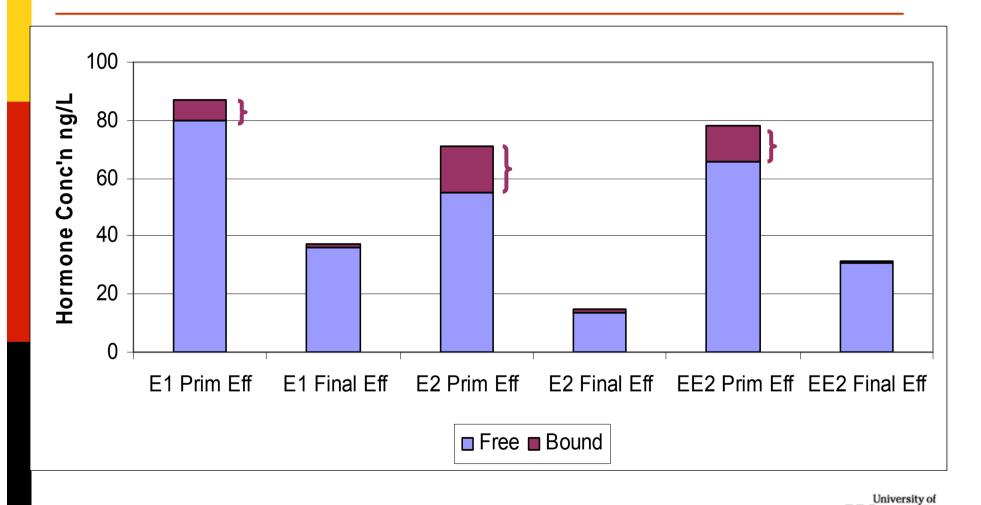

D Biotransformation (including metabolites)

Transfer to gas phase (not important for hormones)

Hydrolysis and other abiotic mechanisms
 Not accounted for in fate models

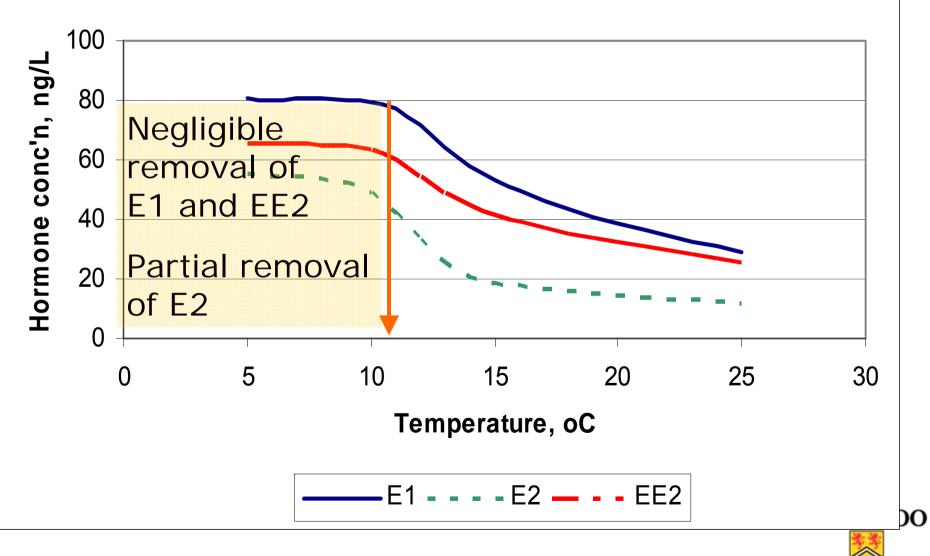
Aerobic Biotransformation in Wastewater Treatment

Modeling Approach

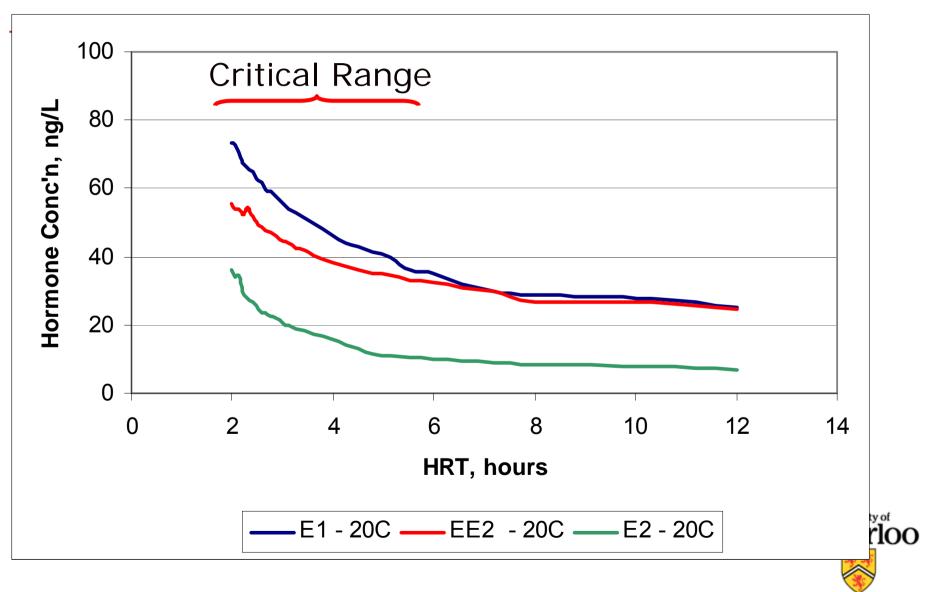

 Combine properties of dynamic wastewater simulator (GPS-X), with mechanistic fate model TOXCHEM+ for micro-constituents

D Modeling faciliates:

- Evaluation of the impact of alternative designs and operating conditions on substances
- Quantitative analysis to better understand processes impacting fate
- A preliminary exercise to demonstrate concept and identify knowledge gaps



Predicted Free and Bound Hormone Concentrations



➢Bound hormone fraction is significant in primary effective

Effect of Temperature

Effect of HRT, 20°C

Modeling Limitations to Date (I)

- Calibration and validations based on limited operating and design data
- Importance of autotrophs and heterotrophs in hormone removal not clear
- Metabolites and pathways are not completely understood
- Additional testing of alternative aerobic, anoxic and anaerobic conditions required

Modeling Limitations to Date (II)

D Uncertain sorption relationships

Description of biomass?

Description No solids treatment processes or return of sidestreams (supernatant, centrate etc.)

Chemicals Management Plan Wastewater Monitoring Workplan

Shirley Anne Smyth Water Science & Technology Directorate Environment Canada

Wastewater Monitoring Objectives

D Temporal trends in influents (warm, cold)

- Fate of compounds in typical wastewater treatment processes: disappearance, partitioning to solids
- **D** Concentrations entering environment
- Baseline data to evaluate future control measures

Criteria for Selection of WWTPs

- Proximity to water quality monitoring sitesProximity to shellfish monitoring sites
- Coordinate with Arctic wastewater working group
- Risk assessment recommendations
- Representative of typical Canadian treatment processes
- **D** Representative of geographical variations
- Large volume discharges

Criteria for Selection of WWTPs

- **D** 20 WWTPs
- **D** At least 1 per province and territory
- **1** aboriginal
- I federal house
- Primary, secondary, advanced, and lagoon treatment

Analytes: Phenols and Drugs

*Bisphenol A	Clofibric acid	
Methyl paraben	Ibuprofen	
Ethyl paraben	Salicyclic acid	
Propyl paraben	Gemfibrozil	
Butyl paraben	Fenoprofen	
2-phenylphenol	Naproxen	
*4-tert-octylphenol	Ketoprofen	
*4-nonylphenol	Tolfenamic acid	
*Triclosan	Diclofenac	
*In sludge	Indomethacin	ty of
	Water	rlo

Analytes: Perfluorinated Compounds

Perfluorobutanoate	Perfluoroundecanoate
Perfluoropentanoate	Perfluorododecanoate
Perfluorohexanoate	Perfluorobutanesulfonate
Perfluoroheptanoate	Perfluorohexanesulfonate
Perfluorooctanoate	Perfluorooctanesulfonate
Perfluorononanoate	Perfluorooctane sulfonamide
Perfluorodecanoate	

Wastewater and sludge

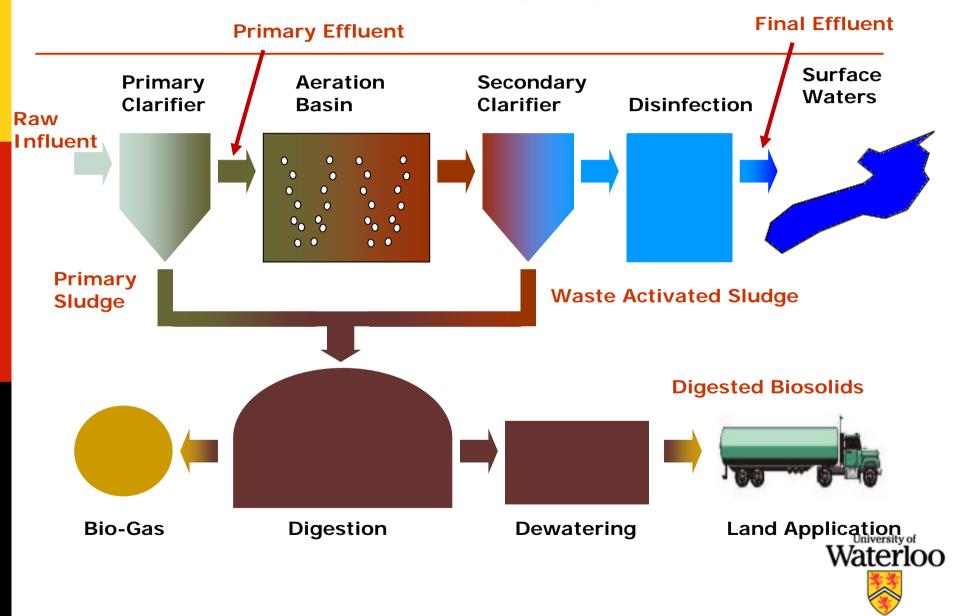
Analytes: Brominated Flame Retardants

- Di, tri, tetra, penta, hexa, hepta, octa, nona, and deca-substituted polybrominated diphenyl ethers
- **u** 40 congeners
- **□** 4 other brominated flame retardants
- Wastewater and sludge

Analytes: Metals

Aluminum	Copper	Nickel
Arsenic	Iron	Selenium
Bismuth	Lead	Silver
Cadmium	Manganese	Thallium
Chromium	Mercury	Vanadium
Cobalt	Molybdenum	Zinc

Chosen from AB, ON, QC, NS, and CMP lists Wastewater and sludge


Analytes: Conventionals

рН	Ammonia	
Alkalinity	Nitrate	
Total Suspended Solids	Total Kjeldahl Nitrogen	
Chemical Oxygen Demand	Phosphorus	
5-day carbonaceous Biochemical Oxygen Demand		
Total Solids in sludge	Volatile Solids in sludge	

Context for occurrence and fate of chemical substances

Sampling Plan

Sampling Times and Methods

- **D** Cold temperatures (January to April)
- Warm temperatures (August to November)
- Liquid: 24-hour equal volume composite, refrigerated autosamplers
- □ Solids: grab
- a 3 consecutive days per plant per temperature

Biosolids

REVIEW OF STATE OF KNOWLEDGE OF BIOSOLIDS SCIENCE AND RESEARCH: CONTAMINANT INVENTORY

Hydromantis, Inc. University of Waterloo Trent University

Supported by:

Canadian Council of Ministers of the Environment

Projects in Development

PPCPs in advanced sludge digestion processes

Integration of biofilms into suspended growth wastewater treatment processes for PPCP control

D Further integration of contaminant fate models and process simulation models

Summary

Low population density and substantial water availability in Canada

Some areas of Canada have substantial wastewater discharges into low flow rivers

- Southern Ontario
- Parts of Western Canada

Summary

Generation of information for risk assessments under Canadian conditions

- Characterization of treatment plant performance
- Characterization of biosolids quality
- Modeling

An interest in optimizing existing facilities for control of ECs

1st Annual CCEC/CWN Workshop on the Control of Emerging Contaminants in Water and Wastewater

Renaissance Hotel and Conference Centre, Toronto Pearson Airport

June 3^{rd} and 4^{th} , 2009.

Fate and Removal of Emerging Contaminants in Water and Wastewater Treatment – an Overview

Dr. Thomas Ternes

Head

Water Chemistry Department


Federal Institute of Hydrology Koblenz, Germany

Contributions of Emerging Contaminants to Sewage and Their Relevance to Municipal Wastewater Systems and the Environment

- Dr. Jörg E. Drewes Director Aqwatec
- Assoc. Professor
 Environmental
 Science & Eng.
 Colorado School of
 Mines

EC Removal Technologies, Oxidation/Advanced Oxidation Processes

Dr. Urs von Gunten

Deputy Head of Department, Water Resources and Drinking Water,

Swiss Federal Institute for Environmental Science and Technology

Communicating Risks Associated with Emerging Contaminants

Dr. Rula Deeb

Senior Associate and Applied Research and Technology Leader, Malcolm Pirnie, Inc

Collapse of a fish population after exposure to a synthetic estrogen

Dr. Karen Kidd

Canada Research Chair in Chemical Contamination of Food Webs

Department of Biology, University of New Brunswick

Drinking Water Treatment

Dr. Sigrid Peldszus	UV based advanced oxidation of selected pharmaceuticals at environmental relevant concentrations
Dr. Ron Hofmann	Advanced oxidation to control taste and odor-causing compounds in drinking water
Elisa Garvey	Removal of NDMA, EDCs and PPCPs from San Francisco South Delta Waters
Xiaohui Jin	Using QSPR to predict the efficiency of AOPs and ozone for Control of EC's
Hong Zhang	Influence of drinking water distribution system conditions on nitrosamines
Ray Yu	Granular activated carbon absorbers for the removal of selected PhACs and an EDC
Joules Carlson	The removal of pharmaceuticals using UV Treatment
Cynthia Halle	Removal of PhACs and EDCs by biological filtration – results of a long-term bench-scale study
Dr. Sigrid Peldszus	Nanofiltration for EC removal from natural waters
MOE,	How Science Informs Policy from a provincial perspective

Wastewater

Sonya Kleywegt Ontario MOE	Survey of the occurrence of pharmaceuticals and other EC's in untreated source and finished drinking waters in Ontario
Dr. Carol Ptacek	Fate of septic-system derived pharmaceutical compounds in shallow sand aquifers
Dr. Hongde Zhou	Sorption and Biodegradation of EC in Membrane Bioreactor Processes Used for Municipal Wastewater Treatment
Hugh Monteith Hydromantis	Modeling of PPCP fate in wastewater treatment
Shirley Anne Smith Environment Canada	"ECs in Canadian Municipal Wastewater", recent studies on PPCPs in full scale wastewater treatment systems and sludge, and current work under the Chemicals Management Plan
Dave Andrews	Impact of changes in full scale wastewater operations on pharmaceutical removals
Kela Weber	Community Profiling and Hydrological Characterization of Constructed Wetland Mesocosms during start-up
Dr. Chris Metcalfe	Evaluation of low-tech solutions for removal of EC's in engineered wetlands
Dr. Ed McBean	Benchmarking Procedures for Monitoring EC's from Waste Disposal Activities
Dr. Mark Servos	Application of SPMEs to measure ecologic effects of ECs
	University of

THANK YOU

