

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Advanced treatment processes for micropollutant removal Full-scale ozonation and PAC addition

H. Siegrist, C. Ort, A. Joss, C. Abegglen, Böhler M., Zwickenpflug B., Miladinovic N. B. Sterkele, *Process Engineering, Eawag* Saskia Zimmermann and Urs von Gunten, *Water Resources and Drinking Water* S. Koepke, M. Krauss, J. Hollender, *Environmental Chemistry* B. Escher, N. Bramaz, R. Schöneberger, M. Suter, *Environmental Toxicology* D. Rentsch, S. Brocker, *Hunziker Betatech* Bramaz N., Schluesener M., Fink G., Ternes T., *BfG, Koblenz, Germany;* M. Schärer, *BAFU, Switzerland*

NEPTUNE Workshop, 21/22 April, Koblenz, Germany

Two technical processes are mainly in discussion for extended micropollutant removal:

- Ozonation: addition of ozone after biological treatment to a short contact tank of about 20 minutes HRT followed by a biological filter or moving bed reactor to degrade the oxidation by-products.
- Activated carbon adsorption: PAC/flocculant addition to a contact/flocculation tank of about 30-60 minutes HRT followed by a clarifier or membrane separation, after the clarifier a filter is needed to reduce PAC loss. *Alternatives:* PAC addition directly to biology or filtration?

Eawag Full scale ozonation at WWTP Regensdorf

Full-scale ozonation

Ozone dosage

- Online measurement of ozone and DOC (as UV absorption)
- Control of ozone concentration by DOC measurements
- > Ozone concentration: 0 1200 g /kg DOC ≈ 0 6 mg/L Ozone

Sampling

- ≻10 sampling compaigns
- > 24h- or 48h-volume proportional composite samples
- ➢ Fitration on-site (0.7 µm glassfiber filters)

Analysis

- Micropollutants
- Ecotoxicity
- Pathogens

eawag squatic research Elimination efficiency – micropollutants

5 sampling campaigns: 617 ± 47 g O_3 / kg DOC

Effect of ozone concentration on elimination efficiency

Elimination efficiency – micropollutants

	Number	Secondary Effluent >15 ng/L	Ozonation effluent (634 g O3/kg DOC) > 15 ng/L	Ozonation effluent (634 g O3/kg DOC) > 100 ng/L
Pharmaceuticals	14	12	3	Atenolol
Antibiotics	10	8	0	
X-Ray contrast media	6	6	not determined	
Biocides/Pesticides	12	8	3	Mecoprop
Corrosion inhibitor	2	2	2	(Methyl)-Benzotriazol
Endorine disruptors	4	1	1	Bisphenol A
Metabolites	5	1	1	

eawag

Isomers of propranolol OPs

000

J. Benner and T. Ternes, AOP5 Conference, Berlin, April 2009

Some compounds with aldehyde moieties interact with DNA and show therefore genotoxic and carcinogenic properties

AOC formation in the ozone reactor

AOC formation for different ozone doses

B....

- ozonation increases the assimilable organic carbon up to a factor of 3.5
- \cdot sand filtration decreases it subsequently to twice the influent concentration

Nitrosamines

- by-products of the ozonation?

4 sampling compaigns: 400 – 700 g Ozone/kg DOC

Bromate formation in ozone reactor

Nag

- Bromate formation only for very high ozone dose (LOQ = 2 μg L⁻¹)
- Concentration remains even below the drinking water standard!

Elimination efficiency – toxic effects

Testbattery

000

- ➢Bioluminescence test
- ≻Algae test
- Acetylcholinesterase test
- ➤Yeast estrogen screen (YES)

non-specific toxicity inhibition of photosynthesis neurotoxicity endocrine disruption

Elimination efficiency – toxic effects

Ozonation leads to a significant reduction of non-specific and specific toxicity
14

Booo

<u>Ozone dose</u> 600 g O₃ / kg DOC

Summary of in vivo biotests in EU-Neptune

	Organism	Endpoint	FS	0	OS
	Chironomus riparius	Mortality Emergence			
25	Lumbriculus variegatus	Reproduction Biomass			
	Potamopyrgus antipodarum	Reproduction			
	Oncorhynchus mykiss	Development Biomass Vitellogenin			

No effects compared to control

15

Cawag equatic research 8000

- Significant negative effects compared to control
- Significant negative effects compared to other treatments

<u>Source</u>: Axel Magdeburg, Daniel Stalter, Mirco Weil, Thomas Knacker, Jörg Oehlmann unpublished Neptune data

Desinfection efficiency of ozonation

16

eawag

Short-circuiting in ozonation reactor

search Oooo

Three-dimensional CFD-simulation for $Q = 0.15 \text{ m}^3 \text{ sec}^{-1}$, and O_3 -dosage = 5 g m⁻³ Markus Gresch, Process Engineering, Eawag

Confirmation with tracer experiments

Zeit in Minuten mit Berücksichtigung dt Probenahmeröhrchen

eawag

Behavior during stormwater

aquatic research 0000

Oxidation kinetics with ozone

Ozone decay depends on pH, alcalinity and DOC (Hoigné, 1988)

Ozone decay in treated wastewater at 21°C and pH = 7 for

Zeit [s]

Wag research 8000

Energy consumption for O₂ and O₃

Energy consumption (15m³ process gas h⁻¹)

Process gas concentration [gO₃ m⁻³ process gas]

- 000

Conclusions to ozonation

- Full scale reactor in Regensdorf proves ozonation to be an efficient technique for the elimination of micropollutants and disinfection
- > 0.6-0.8 g Ozone/g DOC is sufficient to significantly reduce (80-100%) the selected micropollutants
- Ozonation reduces both specific and non-specific in vitro ecotoxicity
- In-vivo tests are not correlating with elimination of micropollutants (except for vitellogenin production)
- The embryo test with rain bow trouts showed a considerable developmental retardation after ozonation but not after filtration (formation of by-products that are again degraded in filtration?)
- Sandfiltration seems appropriate as an additional barrier for the elimination of products formed during ozonation e.g. NDMA but especially AOC
- Bromate formation is not of concern in wastewater with such low bromide concentrations

Conclusions to ozonation

- E.coli is reduced significantly and bathing water quality reached with 0.6 g₀₃/g_{DOC}, 0.9 g₀₃/g_{DOC} reaches the requested CT-value of 10 min·mg₀₃/l
- HRT should be about 20 minutes during dry weather to prevent ozone loss during stormwater (HRT > 5 minutes)
- > Short circuiting in the ozonation chamber should be avoided
- > Ozone decay increases with increasing pH and DOC
- Energy consumption for 1 kg ozone incl. pure oxygen production and transport to WWTP is about 15-17 kWh
- For 0.8 gO₃/gDOC and 5-10 gDOC m⁻³ wastewater electrical energy consumption is 0.06 - 0.13 kWh m⁻³ (20-40% of nutrient removal WWTP)

PAC addition processes

- PAC/flocculant addition to a contact/flocculation tank with clarifier for PAC recycling. After the clarifier a filter is needed to reduce PAC loss.
- PAC addition to a reactor with membrane separation.

Alternatives:

- PAC addition directly to biology: more PAC, inhibitions?
- PAC addition directly to filtration: PAC loss to effluent?

PAC dosage with/without sludge recycling

Micropollutant Sorption Model

Freundlich Isotherm: $C_S = K_F \cdot C_W^{1/n}$ with n = 1...4Sorption kinetics: $r_{sorb} = k_s \cdot (C_W - (C_S/K_F)^n) \cdot PAC_{tank}$

Example: $PAC_{dos} = 10 \text{ mg/l}, C_{in} = 1 \mu g/l$ $K_F = 0.5 \text{ l/mgPAC},$ n = > 1, sorption decreases with increasing micropollutant concentration $k_S = 0.1 \text{ l/mg}_{PAC}/h, \quad k = k_S \cdot PAC_{tank}$ $SA_{PAC} = 24 \text{ h}$ $HRT_{tot} = 0.5 - 5 \text{ h}$ Cascade of 3 tanks

Not included: Competition with DOC: $K_F = K_{F,0} \cdot exp(-k_{DOC} \cdot SA_{PAC})$

Result of Freundlich Isotherm Model

5000

OECD test 106 – to measure Freundlich Isotherms and sorption kinetics

eawag

Test PAC

Typ:Norit SAE SuperBET:1.150 m²/gGrain size D50:15 μmBulk density:425 kg/m³Iodine number:1.050

Test Effluent

Filtrated STP effluent from WWTP Koblenz DOC: 12mg/l, pH: 6.8

Sorption test - interpretation

3000

 $C_s = (C_{w,0} - C_w)/PAC$

k₁- and k₂ values for selected pharmaceuticals (PAC = 20mg/L)

Compound	with spik		without spike		
Compound	k ₁ [h ⁻¹]	k _2[h ⁻¹]	k ₁ [h ⁻¹]	k ₂ [h ⁻¹]	
Sulfamethoxazole	0.11	0.001	0.11	(0.0004)	
Carbamazepine	0.28	0.006	0.59	0.007	
Clarithromycin	0.30	0.007	0.69*	1.78*	
Erythromycin	0.15	0.007	0.40	0.007	
Roxithromycin	0.21	_**	0.55	_ **	

* only three points in graph

000

** values for the last points < LOQ

Results from Batch Experiments

Plot of the Freundlich Isotherms: $logC_s = 1/n \cdot logC_w + logK_F$ is yet not possible due to a lack of data points

Isotherms after 24h with additional spike (1µg/L)

3000

Sample Name	ng/L					
Sample Name	Clarithromycin	Erythromycin	Roxithromycin	Sulfamethoxazole	Carbamazepine	
2mg/L	1331	1444	1281	2625	3938	
5mg/L	925	1369	1061	2488	2950	
10mg/L	445	1108	636	2244	1825	
20 mg/L	45	139	94	1561	416	
50mg/L	< LOQ	12	< LOQ	519	48	
200mg/L	< LOQ	< LOQ	< LOQ	12	19	
LOQ	10	10	10	10	10	

Isotherms after 14 days with additional spike (1µg/L)

Sample Name	ng/L					
	Clarithromycin	Erythromycin	Roxithromycin	Sulfamethoxazole	Carbamazepine	
0.2 mg/l	2990	427	2280	2120	2310	
0.5 mg/l	2106	408	2290	2006	2310	
1 mg/l	3040	553	2980	2100	2144	
2 mg/l	2200	383	2019	2013	2270	
5 mg/l	1035	366	1191	2130	1735	
10 mg/l	269	156	299	1859	710	
50 mg/l	< LOQ	< LOQ	< LOQ	147	< LOQ	
200 mg/l	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	
LOQ	10	10	10	10	10	

Eawag Pilot-scale experiments with SBR

 $SRT_{PAK,SBR}$ = 2.4d Mixing phase 30% of SBR cycle: $SRT_{PAK,eff}$ = 0.7d) DOC = 6-8 mg/l, Al dosage = 6-9 mg/l, after PAC dosage

3000

For comparison Carbamazepine elimination by direct dosage of PAC to an activated sludge system (8-12 mgDOC/I): η = 77% for 20 and η = 90% for 40 mgPAC/I,

Eawag Batch experiments: Effect of DOC

eawag aquatic research 8000 Cawas ooo

Batch experiments: Effect of flocculant

Comparison of Norit SAE super and Norit SAE 2 (recommended for micropollutant removal)

eawag

Source: Hochschule Biberach • WWTP Steinhäule, Ulm

Elimination of selected Pharmaceuticals

research Booo

Source: Hochschule Biberach • WWTP Steinhäule, Ulm

Elimination of contrast media (%)

Booo

acua

PAC dosage = 10 mg/l n = 7 1

■ PAC dosage = 20 mg/l n = 2 :

Quelle: Hochschule Biberach • WWTP Steinhäule, Ulm

Comparison of elimination efficiency of PAC addition to activated sludge versus post treatment

	Roxithromycin	Diclofenac	Carbamazepine	DHH	lomeprol
PAC into the effluent (20 mg/l) and sandfiltration and membranefiltration	67% 85%	58% 63%	89% 87%	54% 77%	37% 60%
PAC into the biol. step (20 mg/l) reference	80% 57%	59% 29%	77% -	68% 29%	88% 90%
Ozonation (0.7 mg O3/mg DOC)	95%	> 99%	> 99%	82%	61%

DOC = 9-11 mgC/l,Sandfiltration:HRT in contact tank = 1h, PAC in Sandfilter = 1 dMembranefiltration:PAC in Membrane tank = 6dActivated sludge:SRT PAC = 20-25 d

EU Project Neptune: M. Schluessener, T.Ternes, G. Fink, BfG; S. Ante, S. Ellerhorst, DPU

Ozone versus PAC addition Comparison of energy and cost

	Decado	Electrical	Primary	Annual Costs ^c		
Treatment	[mg L ⁻¹]	energy energy [kWh m ⁻³ ww] [kWh m ⁻³ ww]		30'000 p.e. [€ m ⁻³ ww]	500'000 p.e. [€ m ⁻³ ww]	
O ₃	<mark>3</mark> ª - 10	<mark>0.05^b</mark> - 0.15	0.15 - 0.45	0.07 ^d - 0.1	0.02 ^d - 0.03	
O ₃ incl. sand filter	<mark>3</mark> ª - 10	0.1 - 0.2 ^e	0.3 - 0.6	0.15 ^d - 0.2	0.05 ^d - 0.07	
PAC	10 - 20	0.005 ^f	0.35 - 0.7 ^g	0.15 - 0.2	0.06 - 0.08	
PAC incl. sand filter	10 - 20	0.05 ^{e,f}	0.5 - 0.8 ^g	0.25 - 0.3	0.09 - 0.11	

^a Ø Operating conditions @ WWTP Regensed of (5mg DOC L⁻¹ \cong 600g O₃ kg⁻¹ DOC)

- ^b Measured @ WWTP Regensed (production of O_3 (incl. O_2), thermal residual- O_3 destructor, control system, cooling aggregate \cong 15kWh kg⁻¹ O_3)
- ^c Detailed, realistic cost study by Hunziker Ltd. (~300L c⁻¹ d⁻¹ \Rightarrow 100m³ c⁻¹ y⁻¹)
- ^d extrapolated from O₃ 5-10mg L⁻¹
- ^e Sand filter (experience from conventional treatment)
- ^f Mixing (experience from conventional treatment)
- ^g Primary energy consumption of PAC (no regeneration) 3.5 kg carbon needed for 1 kgPAC:
 3.5kgC/kgPAC x 2.7kgCOD/kgC x 14MJ/kgCOD / 3.6MJ/kWh = 35kWh/kgPAC

Conclusions for PAC addition

- PAC dosage 10-20 mg/l depending on background DOC
- >60-90% elimination of pharmaceuticals with 10 mgPAC/I
- Sorption efficiency of PAC reduced with increasing DOC
- DOC reduction 30-40% with 10 mg DOC, increases with increasing flocculant concentration
- Flocculant has no substantial effect on sorption efficiency
- Additional clarifier (HRT = 1 h) for PAC recycling and Filtration needed to prevent PAC loss in effluent
- Increase of sludge production about 5-10%
- About 3 kg primary product needed for 1 kg of PAC => primary energy: 130 mJ/kgPAC = 35 kWh/kgPAC
- Investment and operation costs including filtration are 0.05 – 0.2 € m⁻³ for ozonation and 0.1-0.3 for PAC (5-30€/p/y based on 100 m3 wastewater/p/y)

Thank you for your attention

111185

Acknowledgement: BAFU, Switzerland MEEL, Zürich WEDECO, WABAG, BIG Engineering

Staff of WWTP Regensdorf

This study was part of the **EU Neptune project** (Contract No 036845, SUSTDEV-2005-3.II.3.2), which was financially supported by grants obtained from the EU Commission within the Energy, Global Change and Ecosystems Program of the Sixth Framework (FP6-2005-Global-4)

Pharmaceuticals with high ozone reactivity

Oxidation kinetics with ozone

000

TABLE 3. Second-order rate constants for the reaction of O₃ and •OH with selected pharmaceuticals

compound	рК _а	appar. k _{o3} (M⁻¹ s⁻¹)	k _{oн} (10 ⁹ M⁻¹ s⁻¹)
bezafibrate	3.6	590 ± 50	7.4 ± 1.2
carbamazepine		~ 3×10 ⁵	8.8 ± 1.2
clofibric acid		< 20	4.7 ± 0.3
diazepam		0.75 ± 0.15	7.2 ± 1.0
diclofenac	4.2	~ 1×10 ⁶	7.5 ± 1.5
17α-ethinylestradiol	10.4	~ 3×10 ⁶	9.8 ± 1.2
ibuprofen	4.9	9.1 ± 1	7.4 ± 1.2
iopromide		< 0.8	3.3 ± 0.6
naproxen	4.5	2 × 10 ⁵	9.6 ± 0.5
sulfamethoxazole	5.7	2.5 × 10 ⁶	5.5 ± 0.7
roxithromycin	8.8	7 × 10 ⁴	nd

Huber et al. (2005) Oxidation of pharmaceuticals during ozonation of municipal ₄wastewater effluents: a pilot study, Env.Sci.&Techn., 39, 4290-4299.

Elimination efficiency - hygienization

Total cell count WWTP Regensdorf

Average values for two samplings within 15min, error bars show minimum and maximum values.

WWTP Regensdorf

aquatic research 2000

→ significant reduction of total cell counts in the wastewater by ozonation, slight regrowth in rapid sand filter

→ nearly complete elimination of E.coli in the wastewater

28.03.2007 70'000 24.04.2007 19.06.2007 ** 60'000 **16.10.2007** Amount E.coli/100ml 50'000 11.12.2007* 09.01.2008 40'000 11.02.2008 08.04.2008 30'000 17.06.2008** 20'000 **12.08.2008** * 10'000 ž * 0 Sand filtration Final Ozonation sedimentation

E. coli WWTP Regensdorf

Elimination efficiency - hygienization

Total cell counts in Furtbach 28.03.2007 24.04.2007 Blue: before ozonation 25'000 ■ 19.06.2007 **16.10.2007** 20'000 Amount cells/ml Yellow: with ozonation 11.12.2007* 15'000 09.01.2008 08.04.2008 10'000 **17.06.2008**** *Sampling during rain event □ 12.08.2008 5'000 **Sampling after rain event 0 100mdownstream 500mdownstream AOOMUPattean 100mupsteam 1000mdownstream 28.03.2007 E. coli in Furtbach 24.04.2007 19.06.2007 16.10.2007 12'000 11.12.2007* Amount E.coli/100ml 10'000 09.01.2008 **Receiving water:** 08.04.2008 8'000 17.06.2008** **Furtbach** 6'000 □ 12.08.2008 4'000 \rightarrow slight decrease of total cell amount 2'000 in river downstream of the WWTP 0 AOMUPSTEAM 100m downstream 500m downstream 1000mdownetteam 100mupsteam \rightarrow nearly complete elimination of E.coli release to receiving waters

Boog

Batch experiments: Effect of flocculant

000

Ozonation of beta blockers: Kinetic studies and

identification of oxidation products

J. Benner, U. von Gunten and T. Ternes

Isomers of propranolol OPs

000

T. Ternes, AOP5 Conference, Berlin, April 2009

Some compounds with aldehyde moieties interact with DNA and show therefore genotoxic and carcinogenic properties

Proposed OP formation of propranolol at pH 8

Identification of propranolol OP 292

eawag aguatic research Booo

Reported genotoxicity of aldehydes

Some compounds with aldehyde moieties:

- interact with DNA ^a
 - e.g. DNA-protein cross linking
- show genotoxic and carcinogenic properties

^aKuchenmeister, F. et al. *Res.-Gen. Tox. Environ. Mut.* **1998**, *419*, 69-78. ^bEckl, P. M. et al. *Mut. Res.* **1993**, *290*, 183-192.

Formation of hydroxylated products of metoprolol

Ozone reaction^a: release of singlet oxygen

(a) Boncz, M. A. et al. *Wat. Sci. Techn.* **1997**, *35*, 65-72.
(b) Song, W. H. et al. *E S & T* **2008**, *42*, 1256-1261.

eawag

Conclusions

- Beta blockers are reactive towards ozone
 - moderate up to fast reaction kinetics
 - pH dependent k_{O3}

000

- Higher number of OPs are formed by ozone or OH radical attack
- Formation of aldehydes and phenolic moieties
- Metoprolol: pH and t-BuOH changed significantly the OP formation (much less for propranolol)
- In spiked wastewater identified OPs were formed

PAC to Sanfilter / Membranefiltration

eawag

