Are we about to upgrade wastewater treatment for removing organic micropollutants?

Adriano Joss, Hansruedi Siegrist, Eawag, Switzerland
Arne Wick, Michael Schlüsener, Thomas Ternes, BfG, Germany

Neptune Workshop, 25 March 2010, Quebec
Contents

- Sorption
- Biodegradation
- Transformation products
- Predicting environmental concentrations
- Conclusion
Removal by sorption on activated sludge

Bacteria

Negatively loaded surface

Adsorption of a bivalent compound (e.g. Norfloxacain) or a positively loaded compound on the surface

Absorption of a hydrophobic compound (e.g. Tonalide) in the lipophilic membrane

Lipophilic cell membrane
Sorption of micropollutants

Sorbed concentration:

\[C_{\text{sorbed}} = K_d \cdot SS \cdot C_{\text{soluble}} \]

\(K_d = \) Sorption coefficient [l/gSS]
\(SS = \) Suspended solids or sludge production [g/l]

Sorbed fraction:

\[\frac{C_{\text{sorbed}}}{C_{\text{soluble}} + C_{\text{sorbed}}} = \frac{K_d \cdot SS}{1 + K_d \cdot SS} \]
Sorption of micropollutants on activated sludge

Pharmaceuticals

- Carbamazepine, Clofibric acid, Ibuprofen
- Diazepam, Roxithromycin
- Diclofenac, Iopromide
- Estradiol, Ethinylestradiol
- Norfloxacin
- Estrone
- Ibuprofen
- Diazepam, Roxithromycin
- Diclofenac, Iopromide
- Estradiol, Ethinylestradiol
- Norfloxacin
- Galaxolide, Tonalide

Sorption coefficient $K_{d,i}$ [L kg$^{-1}$ SS]

Sorbed share [%]

Primary sludge

Secondary sludge

Sludge prod.

100 gSS m$^{-3}$

200 gSS m$^{-3}$

100 gSS m$^{-3}$
Contents

- Sorption
- Biodegradation
- Transformation products
- Predicting environmental concentrations

Conclusion
Full scale sampling

Kloten-Opfikon (Zurich-North)

CAS: 55,000 PE

MBR: 100 PE

Altenrhein
Lake Constance

CAS: 60,000 PE

BioFilter: 60,000 PE
Full scale sampling

Activated sludge floc

Kloten-Opfikon (Zurich-North)

CAS: 60,000 PE

BioFilter: 60,000 PE

CAS: 55,000 PE

MBR: 100 PE

CAS: 60,000 PE

BioFilter: 60,000 PE

100 μm
Full scale sampling

Submerged biofilm reactor

Kloten-Opfikon
Zurich-North

CAS: 55’000 PE

MBR: 100 PE

CAS: 60’000 PE

BioFilter: 60’000 PE
Full scale sampling

- **Kloten-Opfikon, Zurich-North**
 - CAS: 55'000 PE
 - MBR: 100 PE

- **50% wastewater to biofilter**: 0.5 – 1.5 h HRT
- **50% wastewater to CAS**: 6 – 20 h HRT

- **BioFilter**: 60’000 PE
Full scale sampling

Kloten-Opfikon
Zurich-North

CAS: 55‘000 PE
MBR: 100 PE

Liquid sample
Sludge sample

Altenrhein
Lake Constance

CAS: 60‘000 PE
BioFilter: 60‘000 PE
Comparison of elimination in MBR, biofilter and conventional plant

Most compounds:
- a) different treatment, comparable removal
- b) only partially removed
Batch experiment
Test degradation in lab
Batch experiment with municipal sludge

Relative removal rate constant

\[
\frac{\log C_t - \log C_0}{\Delta t} = k_{biol} \cdot SS
\]

Reaction rate

\[
[\mu g \cdot m^{-3}_{\text{Reactor}} \cdot d^{-1}]
\]

Substance conc.

\[
[\mu g \cdot m^{-3}_{\text{Reaktor}}]
\]

Sludge concentration

\[
[gSS \cdot L^{-1}]
\]

Rate constant

\[
[L \cdot gSS^{-1} \cdot d^{-1}]
\]
Modelling removal in the second biological step

removal [%]

July

Model fits most but not all compounds
Modelling removal in the second biological step

Model fits most but not all compounds
Contents

- Sorption
- Biodegradation
- Transformation products
- Predicting environmental concentrations
- Conclusion
Removal of atenolol and psychoactive drugs in WWTP Frankfurt

- **Screen**
- **Grit removal**
- **Primary clarifier**
- **COD removal**
- **Clarifier 1**
- **Denitrification**
- **Clarifier 2**
- **Denitrification**
- **Receiving water**

1. Biological step (SA: 0.5d; HRT: 0.5h)

2. Biological step (SA: 15-20d; HRT: 4-5h)

[c/c₀]

- Codeine
- Dihydrocodeine
- Morphine
- Primidone
- Atenolol

< LOQ
Biological transformation
Example: Codeine

- used as analgesic and cough suppressant
- most widely used opiate in the world
- opium contains 0.2 to 6% codeine
- mainly produced from morphine by methylation of the hydroxy group at the aromatic ring

up to 90% is removed in WWTPs by primary degradation

formation of transformation products (TPs)?

capsule of the opium poppy (*Papaver somniferum* L.).
Codeine transformation products

TP 314, m/z 313
TP 332, m/z 331
TP 316, m/z 315
TP 300 (1), m/z 299
TP 264, m/z 263
TP 302, m/z 301

in most cases basic structure unchanged

typical reactions observed:
• double bond shift
• hydroxylation
• demethylation
Iopromide: potential aerobic degradation pathways

reaction I/II: oxidation prim./sek. hydroxyl moieties
reaction III: cleavage of amide-methylen bond
reaction IV: oxidative decarboxylation
reaction V: deacetylation

Source: Schulz et al. (2008) ES&T
Transformation products (TPs) of Iopromide in WWTP Frankfurt

Source: Schulz et al., ES&T, 2008
Transformation of iodinated contrast media

Conc. in µg/L

<table>
<thead>
<tr>
<th></th>
<th>WWTP effluent</th>
<th>surface water</th>
<th>groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iomeprol</td>
<td>(0.8)</td>
<td>(1.4)</td>
<td>(261)</td>
</tr>
<tr>
<td>sum of 12 TPs</td>
<td>(0.7)</td>
<td>(1.7)</td>
<td>(128)</td>
</tr>
<tr>
<td>Iopromide</td>
<td>(1.2)</td>
<td></td>
<td>(1.1)</td>
</tr>
<tr>
<td>sum of 9 TPs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iopamidol</td>
<td>(0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum of 15 TPs</td>
<td>(0.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{transformation} \left(\frac{\text{conc. } \Sigma \text{ TP}}{\text{conc. ICM}} \right)
\]

dilution
Contents

- Sorption
- Biodegradation
- Transformation products
 - Predicting environmental concentrations
- Conclusion
1) WWTP influent
2) WWTP effluent
3) Reed bed influent
4) Reed bed effluent
5) Effluent tertiary pond
Wetland van Cuijk

- 4 days hydraulic residence time
- 0.17 m3·m$^{-2}$·d$^{-1}$ hydraulic loading

![Graph showing removal of Ibuprofen in wetland effluent compared to influent. The graph includes a line indicating 33% removal and a marker showing the influent concentration of Ibuprofen.]
Diclofenac: predicted concentrations in Swiss surface waters based on the dilution factor (environmental quality standard: 0.1 µg/L)

A simple model allows identifying hot spots for advanced treatment

- Consumption: 4 t/a
- 35% (Dicl. + meta) in wastewater
- Elimination in WWTP: Ø 25%
- No degradation in surface water

Data: Eawag/FOEN 2006/07
Basis: Vector25@swisstopo (2004)
DHM25@swisstopo (2004)

Ort et al. GWA 11, 2007
Conclusions

- **Sorption to sludge**: relevant for few compounds
- **Degradation** achieves only partial removal
 - First order kinetic does not always fit
- **Transformation products** of similar chemical structure often formed
 - Does elimination result in *detoxification*?
- **Wetlands** achieve little micropollutant removal
- **Environmental concentrations**: estimation based on consumption and dilution
 - Identify spots for advanced treatment
Thank you for your attention …

… and the European Commission for financing
NEPTUNE, 6th Framework Programme