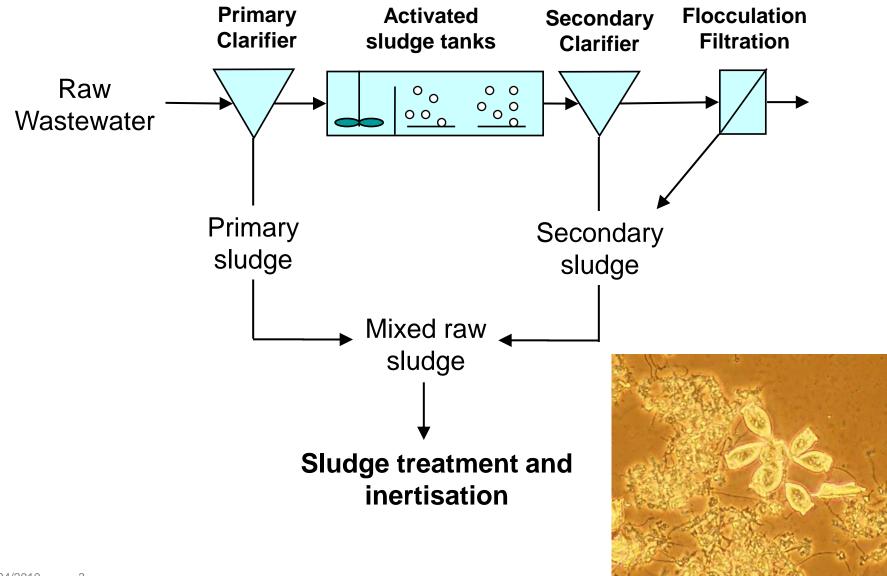


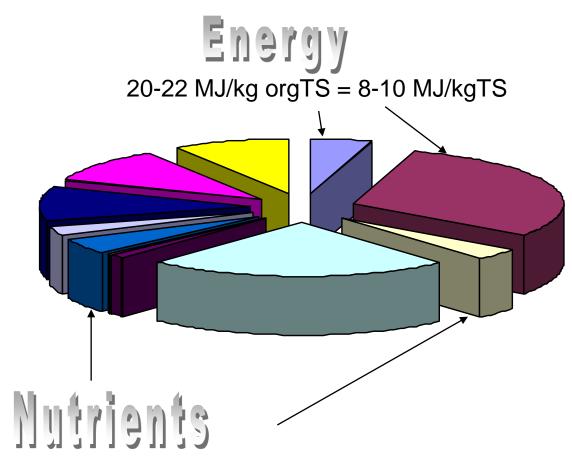
Sewage Sludge Inertisation by Ultrahigh Temperature Pyrolysis


Natalija Miladinovic and Hansruedi Siegrist, Eawag, Switzerland Florence Boyer-Souchet and Henrik Fred Larsen, DTU, Denmark

Neptune workshop: Technical Solutions for Nutrient and Micropollutants Removal in WWTPs Université Laval, Québec, March 25-26, 2010

- Sewage sludge treatment and composition
- Pyrolysis process potential for energy and P reuse
- LCA results comparison with incineration

Sludge production in WWTP



- Stabilization (to reduce mass, volume, odor problems and pathogens as well as gaining energy) with anaerobic digestion
 - For agricultural use:
 - Pasteurization (thermophilic pretreatment) or composting
 - Lime treatment (if no stabilization step) and
 - Long time storage in winter
- Dewatering
- Drying

Sludge composition (stabilized sludge)

Nutrient	Nutrients in WW vs. fertilizer consumption
	%
Nitrogen	12% - 19%
Phosphorus	8% - 21%
Potassium	11% - 24%
01/04/2010 5	

Hydrogen
Carbon
Nitrogen
Oxygen
Sulfur
Chlorine
Phosphorus
Ammonium nitrogen
Calcium

Iron

□ Silicon

Sludge composition (stabilized sludge)

Heavy metals

	mg/kg
Cd	0.28-2.66
Cr	11.2-192.5
Cu	27.3-448.7
Hg	0.21-2.1
Ni	6.3-63
Pb	9.1-154.7
Zn	99.4-1400

*) Data are for EU member states, Source: Disposal and recycling routes for sewage sludge, Part 3, Europian Comission, October 2001

 Organic contaminants

Polynuclear aromatic hydrocarbons (PAH)	Herbicide residues
Polychlorinated biphenyls (PCB)	Organo-tin compounds
Polychlorinated terphenyls	Phthalate esters
Phenol	Petroleum hydrocarbons
Chlorinated hydrocarbon solvents and phenols	Surfactants
Organochlorine insecticides	Aromatic amines
Organophosphorus compounds	

• Pathogens?

- Ocean dumping
- Land fitting ? In Switzerland since 2000, in Sweetlen since 2005
- Agriculture ? Switzerland, Sweeten, The Netherlands...
- Incineration
- Other methods
- P-Recycling

Novel sludge inertisation processes reuse of sludge and of its resources

Super Critical Water Oxidation

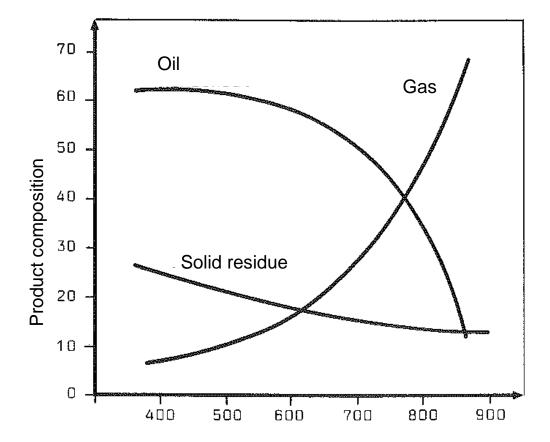
T > 374°C; p = 22MPa = 220 bar

Wet Oxidation

T = 250-300°C; p = 6-10MPa

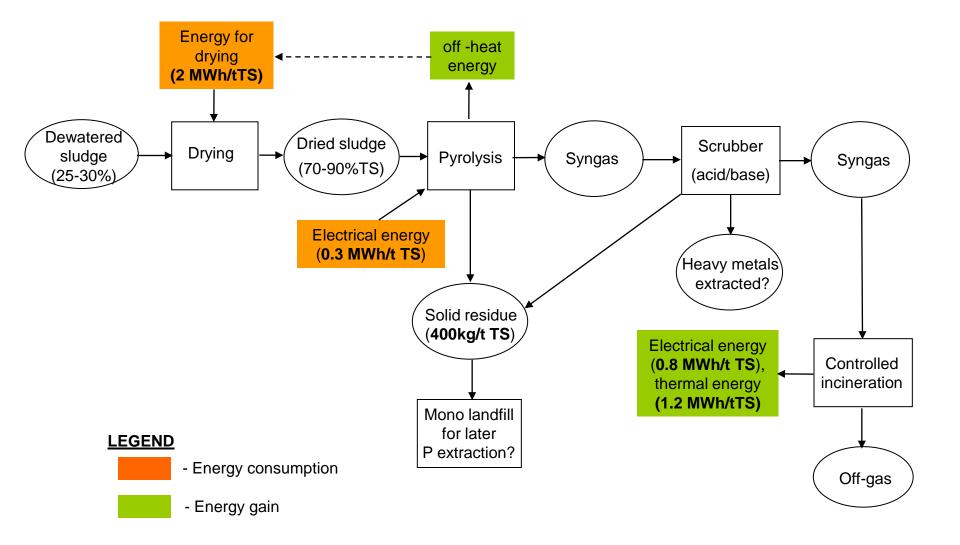
Sludge Gasification

T=850°C


Ultra High Temperature Pyrolysis T=1200-1400°C

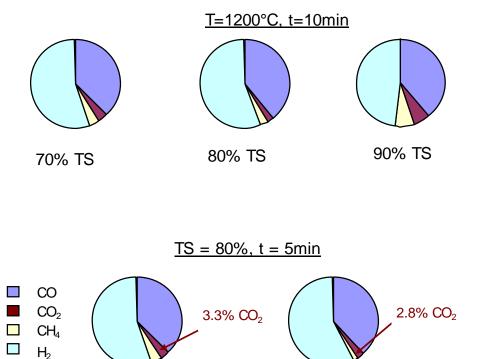
The final result should be:

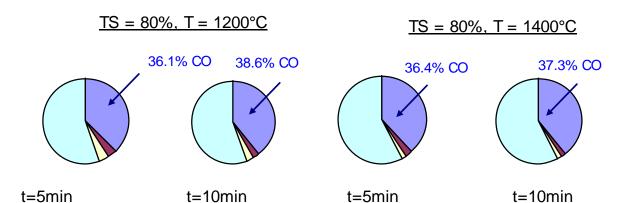
- Sludge reduction, Mineralization of organics
- Elimination or fixation of pollutants
- Recovery of nutrients
- Recovery of energy (not only in form of heat)


High Temperature Pyrolysis (>1'000°C)

- Only two product (solid residue and gas)
- Gas is free of tar but contains heavy metals (gas cleaning?)
- Organic micropollutants are completely destroyed

01/04/2010 9


High temperature pyrolysis


High temperature Pyrolysis, pilot plant Munich

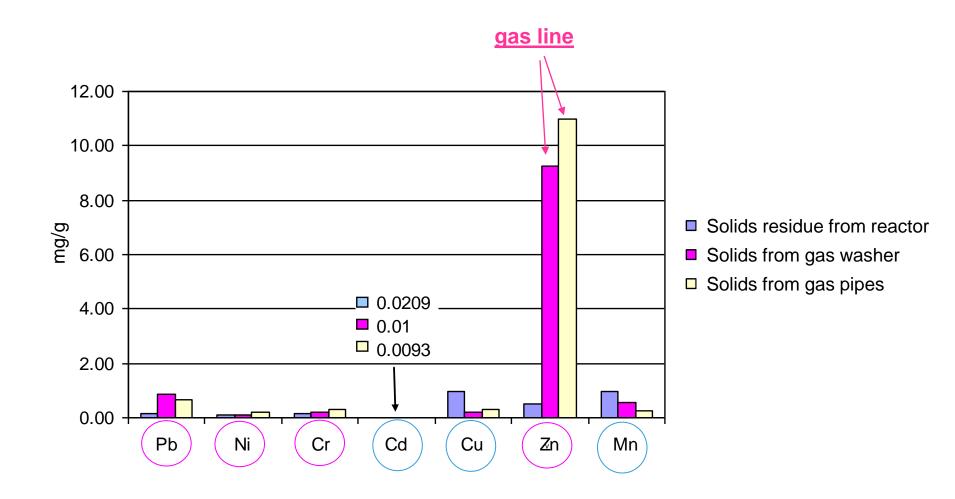
Process gas = Syngas (mainly H₂ and CO)

T=1400°C

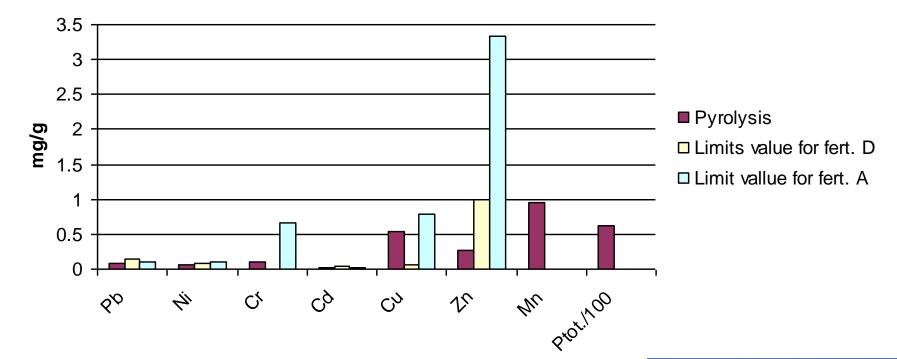
T=1200°C

01/04/2010

12



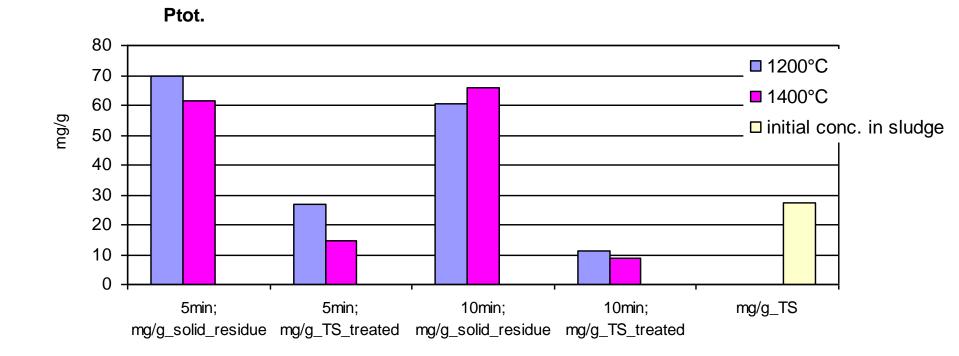
- The amount of produced solid residue and syngas depends on process temperature and reaction time
- TS reduction is maximal about 60% (theoretically calculated from the dried sludge composition: Si, Ca, Fe, Al and P oxides)
- TS reduction observed (see Table) was higher probably due to loss in the gas piping system and gas washer (in the reactor 80% of solid residue and in the gas system and washer only 20% was found)


T	5min	10min
1200°C	62%	81%
1400°C	76%	87%

Heavy metals distribution among solids products (90% TS, T=1200°C, t=10min)

FP6 Project

Heavy metals content – comparison with EU limits¹⁾ for fertilizers


Heavy metals leaching from the solid residue (starting pyrolysis from 80% TS)

• 1g sample was placed in a closed flask suspended in 20ml of deionised water and shaken for 5 days. After filtration the heavy metals content in the liquid was measured and the leached fraction calculated (Table):

Τ	time	Pb	Ni	Cr	Cd	Cu	Zn	Mn
1200°C	5 min	0.63%	0.15%	0.10%	0.13%	0.04%	0.02%	0.00%
	10 min	1.42%	0.19%	0.13%	0.65%	0.08%	0.05%	0.00%
1400°C	5 min	0.77%	0.16%	0.09%	0.16%	0.04%	0.03%	0.01%
	10 min	0.73%	0.19%	0.10%	0.14%	0.04%	0.03%	0.01%

 Neither the temperature nor the residence time influenced the stability of the heavy metals in the solid residue.

Commercial fertilizer has about 8% P content

	5min		10min		
	init.conc.in res. (mg/g	% leached	init.conc.in res. (mg/g)	% leached	init.conc.in sl. (mg/g)
Τ					
1200°C	69.9	12.6%	60.6	9.9%	27.4
1400°C	61.4	11.9%	65.6	11.8%	

Conclusion:

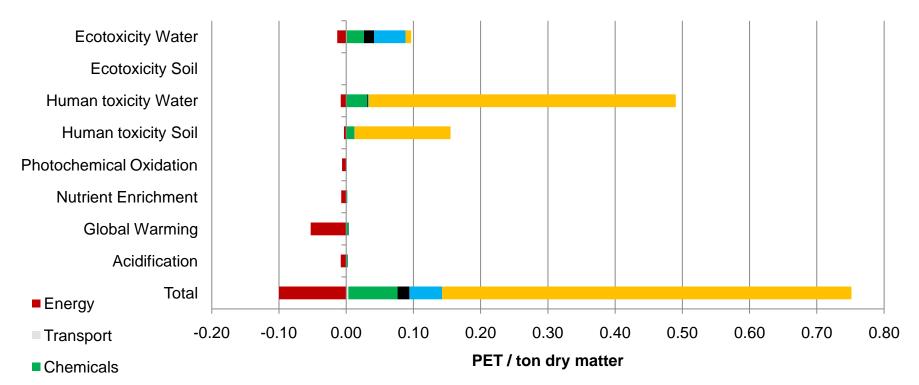
Phosphorus bioavailability seems not to depend on the reaction temperature but is slightly reduced with the reaction time.

	Ptot. init. (mg/g)	Percentage leached
Incineration ash	58-90	0.07%-0.12%
Wet Oxydation solid residue	81.1	8.9%
Pyrolysis (TS80%, 1200°C, 10min)	60.6	9.9%
Gasification in Balingen	58.6	16.5%

Operating data and costs for full-scale pyrolysis

Pyrolysis process	
Capacity:	7000tTS/year
TS :	70-90%
Electricity consumption:	320kWh/tonTS
Oxygen consumption:	none
Solid mineral out:	250kg/tonTS
Gas out	
(to the atmosphere)	none
Operato and maintenance:	4men/year
Primary energy gain:	960kWh/tonTS
Investment costs:	9milion € (for 25ton/d unit)
Personal costs	200'000€/year

LCA: Characterization of Pyrolysis scenario


For inventory list of LCA

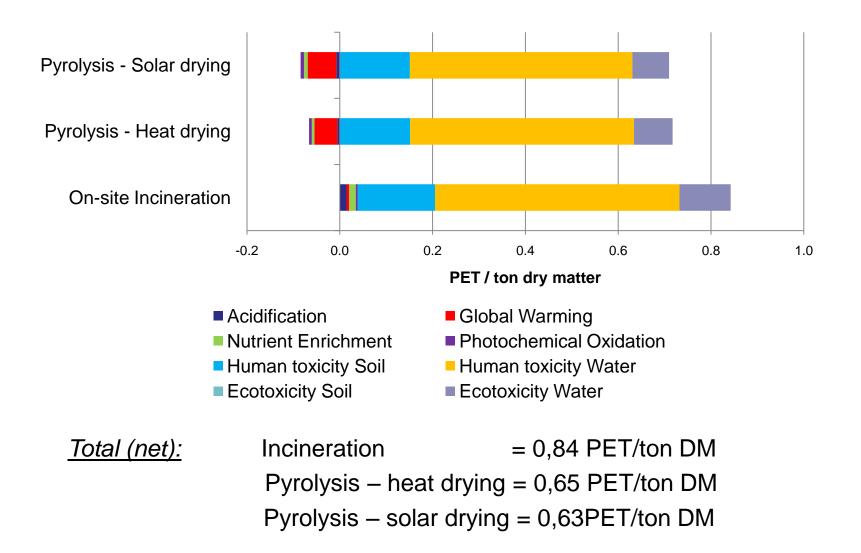
- Sludge composition of municipal WWTP (European average), thickened to 4% DS, dewatered to 25-30% DM)
- Emissions of heavy metals to air -> Cd, Cr, Cu, Hg, Ni, Pb, Zn
- Infrastructure
- Disposal of solid residues
- Chemicals (for off-gas treatment; assumed identical to on-site incineration)
- Transport
- Energy consumption / production

Energy production	Electricity	0.78 MWh/tDM (33% of theoretical yield)
	Heat	1.20 MWht/DM (50% of theoretical yield)
Energy consumption	Electricity	0.34 MWh/tDM (data from Pyromex)
	Heat	1.7-2.2 MWh/tDM (evaporation, 25-30%DM)
Energy balance	Electricity surplus	0.4 - 0.5 MWh/tDM
	Heat missing	0.5 - 1.0 MWh/tDM

LCA: Impact profile; Pyrolysis - heat drying

(Normalized and weighted impacts, PET. Weighting factors =1 for all impact categories).

- Disposal
- Infrastructure

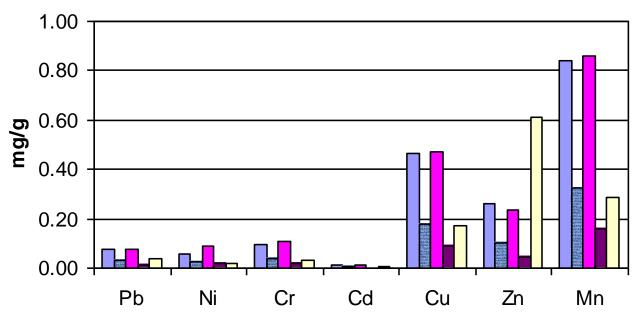

Pyrolysis emissions

Total (net) = 0,65

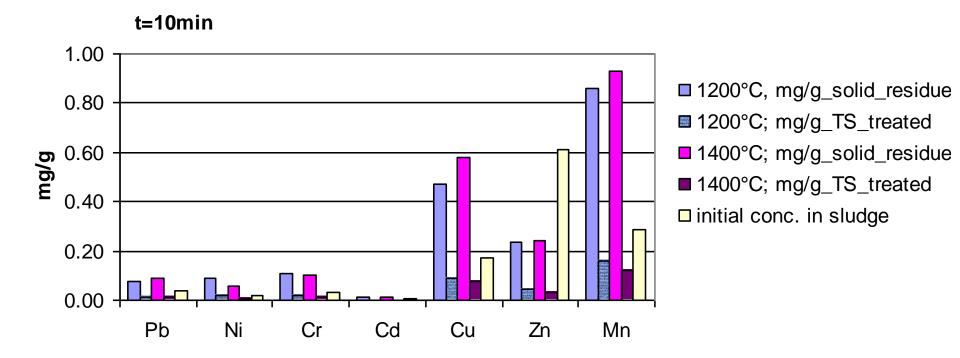
The impact of "pyrolysis emissions" is dominated by mercury air emissions

LCA: Comparison of impact profiles; Pyrolysis and on-site incineration

- High temperature pyrolysis avoids oily phase; only solids (free of organics) and syngas.
- Gas is free of tar and expensive cleaning is avoided.
- Solid product in the reactor has low content of heavy metals, ash has probably to be treated to extract heavy metals
- Potential for phosphorus recycling.
- Higher bioavilibity than incineration ash
- Heavy metals are well immobilized
- LCA indicates that high temperature pyrolysis might be more sustainable than incineration due to lower air emissions and better energy balance
- However, the LCA is highly sensitive to heavy metal emissions, mainly mercury?



 This study was part of the EU Neptune project (Contract No 036845, SUSTDEV-2005-3.II.3.2), which was financially supported by grants obtained from the EU Commission within the Energy, Global Change and Ecosystems Program of the Sixth Framework (FP6-2005-Global-4


Heavy metals in solids residue of reactor (80% TS, 1200°C, t = 5-10 min)

T=1200°C

5min, mg/g_solid_residue
5min; mg/g_TS_treated
10min; mg/g_solid_residue
10min; mg/g_TS_treated
initial conc. in sludge

Heavy metals in solids residue of reactor (80% TS, 1200-1400°C, t = 10 min)

